Strictly Hypoelliptic Second Order Differential Operators
نویسندگان
چکیده
منابع مشابه
Semilinear Hypoelliptic Differential Operators with Multiple Characteristics
In this paper we consider the regularity of solutions of semilinear differential equations principal parts of which consist of linear polynomial operators constructed from real vector fields. Based on the study of fine properties of the principal linear parts we then obtain the regularity of solutions of the nonlinear equations. Some results obtained in this article are also new in the frame of...
متن کاملMultigrid methods for nonlinear second order partial differential operators
This thesis is concerned with the efficient numerical solution of nonlinear partial differential equations (PDEs) of elliptic and parabolic type. Such PDEs arise frequently in models used to describe many physical phenomena, from the diffusion of a toxin in soil to the flow of viscous fluids. The main focus of this research is to better understand the implementation and performance of nonlinear...
متن کاملSecond-order differential equations on R+ governed by monotone operators
Consider in a real Hilbert space H the differential equation (E) : p(t)u′′(t) + q(t)u′(t) ∈ Au(t) + f(t), for a.a. t ∈ R+ = [0,∞), with the condition u(0) = x ∈ D(A), where A : D(A) ⊂ H → H is a maximal monotone operator, with [0, 0] ∈ A (or, more generally, 0 ∈ R(A)); p, q ∈ L∞(R+), with ess inf p > 0 and either ess inf q > 0 or ess sup q < 0; and f : R+ → H is a given function. Recall that eq...
متن کاملFredholm properties of radially symmetric, second order differential operators
We analyze Fredholm properties of radially symmetric second order systems in unbounded domains. The main theorem relates the Fredholm index to the Morse index at infinity. As a consequence, linear operators are Fredholm in exponentially weighted spaces for almost all weights. The result provides the basic tool for the analysis of perturbation and bifurcation problems in the presence of essentia...
متن کاملDifferential Transformations of Parabolic Second-Order Operators in the Plane
The theory of transformations for hyperbolic second-order equations in the plane, developed by Darboux, Laplace and Moutard, has many applications in classical differential geometry [12, 13], and beyond it in the theory of integrable systems [14, 19]. These results, which were obtained for the linear case, can be applied to nonlinear Darboux-integrable equations [2, 7, 15, 16]. In the last deca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1982
ISSN: 0002-9939
DOI: 10.2307/2044278